HW07 - Solubility Equilibria

Question 1

What is the net ionic equation for the reaction between aqueous solutions of Na_3PO_4 and CuSO₄?

 \bigcirc 3Cu²⁺ + 2PO₄³⁻ \longrightarrow Cu₃(PO₄)₂

 \bigcirc 2Na⁺ + SO₄²⁻ \longrightarrow Na₂SO₄

O No reaction occurs since no precipitate is formed.

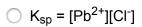
 \bigcirc Cu²⁺ + PO₄³⁻ \longrightarrow CuPO₄

Question 2	2 pts
What ions are present in solution after aqueous solutions of $Cu(NO_3)_2$ and K_2S armixed? Assume we mixed stoichiometric equivalent amounts of both reactants an reaction.	
○ Cu ²⁺ , S ²⁻	
O No ions are present as both products form precipitates.	
○ Cu ²⁺ , NO ₃ ⁻ , K ⁺ , S ²⁻	

Question 3	2 pts
Molar solubility is	
O the number of moles that dissolve to give one liter of super-saturated solution.	
O the total molarity of the solution.	
O the number of moles that dissolve to give one liter of saturated solution.	
\bigcirc equal to the K _{sp} .	

Question 4

The K_{sp} equation for sodium bicarbonate (NaHCO₃) should be written as:


 \bigcirc K_{sp} = [Na⁺][HCO₃⁻]

- \bigcirc K_{sp} = [Na⁺][H⁺][C⁴⁺][O²⁻]³
- \bigcirc K_{sp} = [Na⁺][H⁺][CO₃²⁻]
- \bigcirc K_{sp} = [NaH²⁺][CO₃²⁻]

Question 5

2 pts

Pure water is saturated with $PbCl_2$. In this saturated solution, which of the following is true?

- \bigcirc K_{sp} = [Pb²⁺]²[Cl⁻]
- \bigcirc [Pb²⁺] = 0.5[Cl⁻]

○ [Pb²⁺] = [Cl⁻]

Question 6

2 pts

A hypothetical ionic substance T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of T_3U_2 is 4.04x10⁻²⁰ mol/L. What is the value of the solubility-product constant?

○ 9.79x10⁻³⁹

○ 1.16 x 10⁻⁹⁵

○ 1.08x10⁻⁹⁷

○ 1.63x10⁻³⁹

Question 7	2 pts
The value of K_{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in	n moles per liter?
○ 5.3 x 10 ⁻⁴	
○ 2.8 x 10 ⁻⁷	
○ 7.6 x 10 ⁻⁷	
○ 1.4 x 10 ⁻⁷	

Question 11

2 pts

Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB_2 if K_{sp} = 2.56x10². ○ 1 M 🔾 4 M 🔘 10 M 🔘 0.1 M

Question 9		2 pts
Rank the followi	ng salts from least to most molar solubility:	
Bil	$K_{sp} = 7.7 \times 10^{-19}$	
$Cd_3(AsO_4)_2$	$K_{sp} = 2.2 \times 10^{-33}$	
AIPO ₄	$K_{sp} = 9.8 \times 10^{-21}$	
CaSO ₄	$K_{sp} = 4.9 \times 10^{-5}$	
○ AIPO ₄ < Bil <	$Cd_3(AsO_4)_2 < CaSO_4$	
○ Cd ₃ (AsO ₄) ₂ <	$AIPO_4 < Bil < CaSO_4$	
○ Cd ₃ (AsO ₄) ₂ <	$Bil < AIPO_4 < CaSO_4$	
◯ CaSO₄ < Bil <	$AIPO_4 < Cd_3(AsO_4)_2$	

Question 10	3 pts
A hypothetical compound MX $_3$ has a molar solubility of 0.00562 M. W $K_{ m sp}$ for MX $_3$?	Vhat is the value of
○ 2.69 x 10 ⁻⁸	
◯ 3.16 x 10 ⁻⁵	
○ 9.48 x 10 ⁻⁵	
○ 2.99 x 10 ⁻⁹	

Determine if a precipitate will form when 0.96g Na ₂ CO ₃ is combined with 0.2g BaBr ₂ in a 10L solution. (For BaCO ₃ , K_{sp} = 2.8x10 ⁻⁹).
O BaCO ₃ precipitates
BaBr ₂ will remain in solid form as it is insoluble in water.
 BaCO₃ does not precipitate
\bigcirc It is impossible to know if any BaCO ₃ will precipitate with the information given.

Question 12	2 pts
CaSO ₄ has a K_{sp} = 3x10 ⁻⁵ . In which of the following would CaSO ₄ be the most solution	ble?
○ 1.0 M CaCl ₂ (aq)	
\bigcirc CaSO ₄ would have the same solubility in all three of these solutions	
○ 0.5 M K ₂ SO ₄ (aq)	
○ pure water	

Question 13	2 pts
A solution of AgI contains 1.9 M Ag ⁺ . K_{sp} of AgI is 8.3 x 10 ⁻¹⁷ . What is the maconcentration that can exist in this solution?	aximum I ⁻
○ 1.6x10 ⁻¹⁶ M	
○ 4.4x10 ⁻¹⁷ M	
○ 1.9 M	
○ 8.3x10 ⁻¹⁷ M	

Question 14	3 pts
What would be the molar solubility of Li_3PO_4 (K _{sp} = 2.37 x 10 ⁻⁴) in a 1M Li	Cl solution?
○ 5.44 x 10 ⁻²	
○ 2.37 x 10 ⁻⁴	
○ 1.54 x 10 ⁻²	
○ 1.24 x 10 ⁻¹	